International Journal of Academy of Engineering Research and Theory (IJAERT)
https:/ijaert.perfectengineeringassociates.com
2016
Nigeria, Akinola Johnson OLAREWAJU
Characteristics of Densified Plastic Pellet Stabilized Lateritic Soil to Reduce the Impact of Accidental Explosions on Underground Structures Journal Article
In: International Journal of Academic Research and Innovation, vol. 1, no. 1, pp. 1-7, 2016, ISSN: 2545 - 5214.
@article{IJARI-01-001,
title = {Characteristics of Densified Plastic Pellet Stabilized Lateritic Soil to Reduce the Impact of Accidental Explosions on Underground Structures},
author = {Nigeria, Akinola Johnson OLAREWAJU},
editor = {Dr. Akinola Johnson OLAREWAJU},
url = {http://perfectengineeringassociates.com/wp-content/uploads/2020/02/IJARI-01-001.pdf},
issn = {2545 - 5214},
year = {2016},
date = {2016-11-18},
journal = {International Journal of Academic Research and Innovation},
volume = {1},
number = {1},
pages = {1-7},
abstract = {This study examines the effect of compacted plastic pellets stabilized lateritic soil to reduce the impact of accidental explosions on underground structures. In this study, lateritic soil and plastic were taken from Ilaro, Ogun State, Nigeria. The plastic wastes were grounded into pellets and substituted with laterite. The tests were conducted in line with BS 1377 (1990) to determine the moisture content and compaction. The results were compared with the simulated results of Olarewaju (2013) in the study of the response of underground structures due to blast loads. In the said work, soil and pipes were modeled; loads from accidental explosions were estimated using Unified Facilities Criteria (2008). Various constituents of blast considered are ground media, pipes, intervening medium, blast, blast characteristics and method of analysis (finite element formulation and solution using ABAQUS/Explicit in ABAQUS). From the results, the lowest dry density value is 0.96kg/m3 and 1.130 kg/m3 respectively at 30% plastic pellets mixed with lateritic soil. In the work of Olarewaju (2013), dimensionless deflection at the crown, invert and spring-line of underground pipes in loose material is low compared to dense material. It is clear that at 30% and above plastic substitution, the density is relatively low and this could as soft backfill material reduce the impact of accidental explosions on underground structures. Consequently, loads arising from various accidental explosions on underground structures would be greatly reduce, if not completely eliminated
Keywords: Plastic Pellets, Explosion, Laterite, Underground, Structures},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
This study examines the effect of compacted plastic pellets stabilized lateritic soil to reduce the impact of accidental explosions on underground structures. In this study, lateritic soil and plastic were taken from Ilaro, Ogun State, Nigeria. The plastic wastes were grounded into pellets and substituted with laterite. The tests were conducted in line with BS 1377 (1990) to determine the moisture content and compaction. The results were compared with the simulated results of Olarewaju (2013) in the study of the response of underground structures due to blast loads. In the said work, soil and pipes were modeled; loads from accidental explosions were estimated using Unified Facilities Criteria (2008). Various constituents of blast considered are ground media, pipes, intervening medium, blast, blast characteristics and method of analysis (finite element formulation and solution using ABAQUS/Explicit in ABAQUS). From the results, the lowest dry density value is 0.96kg/m3 and 1.130 kg/m3 respectively at 30% plastic pellets mixed with lateritic soil. In the work of Olarewaju (2013), dimensionless deflection at the crown, invert and spring-line of underground pipes in loose material is low compared to dense material. It is clear that at 30% and above plastic substitution, the density is relatively low and this could as soft backfill material reduce the impact of accidental explosions on underground structures. Consequently, loads arising from various accidental explosions on underground structures would be greatly reduce, if not completely eliminated
Keywords: Plastic Pellets, Explosion, Laterite, Underground, Structures
Keywords: Plastic Pellets, Explosion, Laterite, Underground, Structures